Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 173: 116402, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471277

ABSTRACT

Oleanolic acid (OA) is previously shown to exert bone protective effects in aged animals. However, its role in regulating osteoblastic vitamin D bioactivation, which is one of major causes of age-related bone loss, remains unclear. Our results revealed that treatment of OA significantly increased skeletal CYP27B1 expression and circulating 1,25(OH)2D3 in ovariectomized mice (p <0.01). Moreover, OA upregulated CYP27B1 protein expression and activity, as well as the vitamin D-responsive bone markers alkaline phosphatase (ALP) activity and osteopontin (OPN) protein expression, in human osteoblast-like MG-63 cells (p<0.05). CYP27B1 expression increased along with the osteoblastic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). CYP27B1 expression and cellular 1,25(OH)2D3 production were further potentiated by OA in cells at mature osteogenic stages. Notably, our study suggested that the osteogenic actions of OA were CYP27B1 dependent. In summary, the bone protective effects of OA were associated with the induction of CYP27B1 activity and expression in bone tissues and osteoblastic lineages. Hence, OA might be a potential approach for management of age-related bone loss.


Subject(s)
Anabolic Agents , Oleanolic Acid , Osteoporosis , Vitamin D/analogs & derivatives , Humans , Animals , Mice , Aged , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Oleanolic Acid/pharmacology , Vitamin D/pharmacology , Vitamin D/metabolism , Bone and Bones/metabolism , Vitamins
2.
Molecules ; 28(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570714

ABSTRACT

Secoisolariciresinol (SECO) is one of the major lignans occurring in various grains, seeds, fruits, and vegetables. The gut microbiota plays an important role in the biotransformation of dietary lignans into enterolignans, which might exhibit more potent bioactivities than the precursor lignans. This study aimed to identify, synthesize, and evaluate the microbial metabolites of SECO and to develop efficient lead compounds from the metabolites for the treatment of osteoporosis. SECO was fermented with human gut microbiota in anaerobic or micro-aerobic environments at different time points. Samples derived from microbial transformation were analyzed using an untargeted metabolomics approach for metabolite identification. Nine metabolites were identified and synthesized. Their effects on cell viability, osteoblastic differentiation, and gene expression were examined. The results showed that five of the microbial metabolites exerted potential osteogenic effects similar to those of SECO or better. The results suggested that the enterolignans might account for the osteoporotic effects of SECO in vivo. Thus, the presence of the gut microbiota could offer a good way to form diverse enterolignans with bone-protective effects. The current study improves our understanding of the microbial transformation products of SECO and provides new approaches for new candidate identification in the treatment of osteoporosis.


Subject(s)
4-Butyrolactone , Lignans , Humans , Diet , Lignans/pharmacology , Lignans/metabolism , Butylene Glycols/pharmacology , Butylene Glycols/metabolism
3.
Nutrients ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432403

ABSTRACT

Our previous study revealed that the bone anabolic effects of the lignan-rich fraction (SWCA) from Sambucus williamsii Hance was involved in modulating the metabolism of tryptophan in vivo and inhibiting serotonin (5-HT) synthesis in vitro. This study aimed to determine how SWCA modulates bone metabolism via serotonin in vivo. The effects of SWCA were evaluated by using 4-month-old Sprague-Dawley (SD) ovariectomized rats. The serum levels of 5-HT and kynurenine, the protein expressions of tryptophan hydroxylase 1 (TPH-1) and TPH-2, the genes and proteins related to the 5-HT signaling pathway as well as gut microbiota composition were determined. SWCA treatment alleviated bone loss and decreased serum levels of serotonin, which was negatively related to bone mineral density (BMD) in rats. It suppressed the protein expression of TPH-1 in the colon, and reversed the gene and protein expressions of FOXO1 and ATF4 in the femur in OVX rats, while it did not affect the TPH-2 protein expression in the cortex. SWCA treatment escalated the relative abundance of Antinobacteria and modulated several genera relating to BMD. These findings verified that the bone protective effects of lignans were mediated by serotonin, and provided evidence that lignans might be a good source of TPH-1 inhibitors.


Subject(s)
Gastrointestinal Microbiome , Lignans , Sambucus , Rats , Animals , Serotonin , Lignans/pharmacology , Rats, Sprague-Dawley
4.
Biomed Pharmacother ; 137: 111372, 2021 May.
Article in English | MEDLINE | ID: mdl-33761598

ABSTRACT

Menopausal women are susceptible to have high risk of cardiovascular diseases, type II diabetes and osteoporosis due to the metabolic disorder caused by estrogen deficiency. Accumulating evidence supports that gut microbiota is a key regulator of metabolic diseases. Our previous metabolomics study interestingly demonstrated that the anti-osteoporotic effects of lignan-rich fraction (SWCA) from Sambucus wialliamsii Hance were related to the restoration of a series of lipid and glucose metabolites. This study aims to investigate how SWCA modulates lipid and glucose metabolism and the underlying mechanism. Our results show that oral administration of SWCA (140 mg/kg and 280 mg/kg) for 10 weeks alleviated dyslipidemia, improved liver functions, prevented glucose tolerance and insulin actions, attenuated system inflammation and improved intestinal barrier in OVX rats. It also induced a high abundance of Actinobacteria, and restored microbial composition. We are the first to report the protective effects of the lignan-rich fraction from S. williamsii on dyslipidemia and insulin resistance. Our findings provide strong evidence for the application of this lignan-rich fraction to treat menopausal lipid disorder and insulin resistance-related diseases.


Subject(s)
Dyslipidemias/drug therapy , Gastrointestinal Microbiome/drug effects , Hypolipidemic Agents/pharmacology , Insulin Resistance , Lignans/pharmacology , Sambucus/chemistry , Administration, Oral , Animals , Cytokines/metabolism , Female , Glucose/metabolism , Glucose Tolerance Test , Liver/drug effects , Ovariectomy , Plant Extracts/pharmacology , Plant Stems/chemistry , Rats , Rats, Sprague-Dawley
5.
Am J Chin Med ; 48(2): 463-485, 2020.
Article in English | MEDLINE | ID: mdl-32138532

ABSTRACT

Oxidative stress (OS) is the common mechanism for age-related diseases. The co-occurrence of osteoporosis (OP) and cardiovascular disease (CVD) in postmenopausal women makes it warranted to find a holistic approach for treatment of multiple diseases or conditions. The rhizome of Ligusticum chuanxiong Hort. (CX), which has high anti-oxidant properties and is widely used for CVD treatment in China, might be the potential candidate. In the present study, CX ethanol extract (CXE) was applied to H2O2 induced MG63 cells to study its effects and mechanisms on osteoblastogenesis against OS. CXE was then administered to six-month-old Sprague Dawley sham or ovariectomized (OVX) rats fed either a low saturated fat-sucrose (LFS) or a high fat-sucrose (HFS) diet for 12 weeks, to confirm its anti-osteoporotic effects. The results demonstrated that CXE directly improved proliferation and differentiation in vitro in an H2O2-induced osteoblast cell model by attenuating cellular reactive oxygen species levels and inhibiting osteoblast apoptosis via PI3K/Akt signaling pathway. CXE significantly improved bone properties as revealed by the increase in trabecular bone mineral density and decrease in trabecular separation at proximal metaphysis of the tibia (PT) in HFS-fed OVX rats but not in LFS-fed OVX rats. CXE ameliorated dyslipidemia, greatly reduced lipid deposition and malondialdehyde levels, improved activities of superoxide dismutase, catalase and glutathione peroxidase in the livers of HFS-fed OVX rats. In conclusion, CXE could favor osteoblastogenesis against OS. The ability of CXE to reduce bone loss in HFS-fed OVX rats was associated with its abilities to correct dyslipidemia, and reduce lipid deposition and OS levels.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hyperlipidemias/complications , Osteoporosis/etiology , Osteoporosis/prevention & control , Ovariectomy/adverse effects , Animals , Cells, Cultured , Drugs, Chinese Herbal/therapeutic use , Female , Osteoblasts/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phytotherapy , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
6.
Front Pharmacol ; 9: 1435, 2018.
Article in English | MEDLINE | ID: mdl-30564129

ABSTRACT

Oleanolic acid (OA) and ursolic acid (UA) are the major chemical constituents in Fructus Ligustri Lucidi (FLL), a kidney-tonifying Chinese herb that is previously shown to improve bone properties and enhance calcium balance in aged female rats. The present study was designed to study if OA and UA act as the active ingredients in FLL to exert the positive effects on bone and mineral metabolism in aged rats. Aged (13-month-old) Sprague-Dawley female rats were randomly assigned to four groups with oral administration of drug or vehicle treatment for 12 weeks: medium calcium diet (MCD, 0.6% calcium), high calcium diet (HCD, 1.2% calcium), MCD + FLL (700 mg/kg/day), MCD + OA (23.6 mg/kg/day) + UA (8.6 mg/kg/day). A group of mature (3-month-old) female rats fed with MCD was included as positive control. The results demonstrated that FLL and OA+UA increased bone mineral density and improved microarchitectural properties of aged female rats. The osteoprotective effects of FLL and OA+UA might be, at least in part, associated with their actions on enhancing calcium balance and suppressing age-induced secondary hyperparathyroidism in aged female rats. FLL and OA+UA also significantly induced renal CYP27B1 protein expression and OA+UA treatment decreased CYP24A1 mRNA and protein expressions in aged female rats. In addition, FLL and OA+UA significantly increased the promoter activity, mRNA and protein expressions of renal CYP27B1 in vitro in human proximal tubule HKC-8 cells. The present findings suggest that OA+UA can be regarded as the active ingredients of FLL and might be a potential drug candidate for prevention and treatment of osteoporosis.

7.
Nutrients ; 10(2)2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29470404

ABSTRACT

Oleanolic acid (OA) is a triterpenoid with reported bone anti-resorption activities. The present study aimed to characterize its bone protective effects in vivo and to study its effects on vitamin D metabolism, both in vivo and in vitro. OA significantly increased bone mineral density, improved micro-architectural properties, reduced urinary Ca excretion, increased 1,25(OH)2D3 and renal CYP27B1 mRNA expression in mature C57BL/6 ovariectomised (OVX) mice. OA also improved bone properties, Ca balance, and exerted modulatory effects on renal CYP27B1 and CYP24A1 expressions in aged normal female Sprague-Dawley rats. In addition, OA significantly increased renal CYP27B1 mRNA and promoter activity, and suppressed CYP24A1 mRNA and protein expressions in human proximal tubule HKC-8 cells. OA exerted bone protective effects in mature OVX mice and aged female rats. This action on bone might be, at least in part, associated with its effects on Ca and vitamin D metabolism. The present findings suggest that OA is a potential drug candidate for the management of postmenopausal osteoporosis.


Subject(s)
Bone Density Conservation Agents/pharmacology , Bone Density/drug effects , Bone Remodeling/drug effects , Bone and Bones/drug effects , Oleanolic Acid/pharmacology , Osteoporosis, Postmenopausal/drug therapy , Vitamin D/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Animals , Bone and Bones/diagnostic imaging , Bone and Bones/metabolism , Bone and Bones/physiopathology , Calcitriol/metabolism , Calcium/urine , Cell Line , Disease Models, Animal , Dose-Response Relationship, Drug , Duodenum/drug effects , Duodenum/metabolism , Female , Humans , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/enzymology , Mice, Inbred C57BL , Osteoporosis, Postmenopausal/diagnostic imaging , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/physiopathology , Ovariectomy , Rats, Sprague-Dawley , Vitamin D3 24-Hydroxylase/genetics , Vitamin D3 24-Hydroxylase/metabolism , X-Ray Microtomography
8.
Biomed Pharmacother ; 88: 569-573, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28135600

ABSTRACT

Neuronal apoptosis caused by toxic stimuli such as oxidative stress is believed to be one of the major reasons in the pathologenesis of neurodegenerative diseases. In the current study, the neuroprotective effects of the crude polysaccharide fraction of edible Dictyophora echinovolvata (DEVP) against H2O2-induced cytotoxicity were investigated using PC12 cells. Following exposure of PC12 cells to 750µM H2O2, a significant reduction in cell viability and the number of FDA-stained viable neurons as well as an increase in the number of PI-stained dead cells were observed. Furthermore, H2O2 treatment significantly upregulated the protein expression of Bax, cleaved caspases 3 and cytosolic cytochrome c, and down-regulated Bcl-2 levels. 2h pre-treatment with VP reversed these changes caused by H2O2, including inhibiting neuronal loss and decreasing Bax, cleaved caspases 3 and cytosolic cytochrome c levels, as well as increasing Bcl-2 levels. These results taken together demonstrated that DEVP provided a substantial neuroprotection against H2O2-induced toxicity in PC12 cells, at least partly through inhibiting the mitochondrial apoptotic pathway. These findings suggested that DEVP might be a potential candidate for further preclinical study for preventing neurodegenerative diseases in which oxidative stress and apoptosis are involved.


Subject(s)
Apoptosis/drug effects , Basidiomycota/chemistry , Hydrogen Peroxide/toxicity , Mitochondria/metabolism , Neuroprotection/drug effects , Polysaccharides/pharmacology , Animals , Cell Shape/drug effects , Intracellular Space/metabolism , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Neurotoxins/toxicity , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...